Lectures by Walter Lewin

This channel contains the complete 8.01x (Physics I: Classical Mechanics), 8.02x (Physics II: Electricity and Magnetism) and 8.03 (Physics III: Vibrations and Waves) lectures as presented by Walter Lewin in the fall of 1999, spring of 2002 and fall of 2004. The 8.01x and 8.02x edX lectures are high resolution (480p) versions of the more commonly seen OCW versions. Some edits were also made by Lewin. 8.03 is the OCW version, also in a 480p resolution. Links to lecture notes, assignments/solutions and exams/solutions are added. Playlists with Help Sessions for 8.01x, 8.02x and 8.03 are also available. They are “mini lectures”. The problems discussed in these videos should be apparent after watching the first few minutes. Other playlists show Lewin in various appearances and his Bi-Weekly Physics problems/solutions and several excellent lectures by Feynman and others.

Similar Stuff

Z Proportions

Becca Hirsbrunner photographed this fabulously constructed Z proportions letter. Interestingly, every element but the diagonal bar can be rationalized.
NASA Scientists in 1961 | Cool Science Stuff | Abakcus

NASA Scientists in 1961

In 1961 NASA scientists worked hard to send an American astronaut to the moon. And we have this beautiful photo from those days.
Mandelbrot Island | Cool Math Stuff | AbakcusMandelbrot Island | Cool Math Stuff | Abakcus

Mandelbrot Island

When Alexis Monnerot-Dumaine rendered Mandelbrot set as an island using the fractal-based landscape generator, Terragen, he got this Mandelbrot island.

Adaptive Roots

These two lovely photos of adaptive roots show how nature fits the environment, and the way they do that is so impressive!

A Geometric Haircut

Imagine that your barber’s name is Zeno and he is doing 1/2 off haircuts. Probably he would do a geometric haircut. This is hilarious.
Limit Definition of Derivative | Cool Math Stuff | Abakcus

Limit Definition of Derivative

This limit definition of derivatives math meme depicts calculus students when they realize they can use a simple notation for derivatives.